

AP7361C-12SPR-13 Datasheet

D

Mai

www.digi-electronics.com

DiGi Electronics Part Number	AP7361C-12SPR-13-DG
Manufacturer	Diodes Incorporated
nufacturer Product Number	AP7361C-12SPR-13
Description	IC REG LINEAR 1.2V 1A 8SO
Detailed Description	Linear Voltage Regulator IC Positive Fixed 1 Output 1A 8-SO-EP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
AP7361C-12SPR-13	Diodes Incorporated
Series:	Product Status:
	Active
Output Configuration:	Output Type:
Positive	Fixed
Number of Regulators:	Voltage - Input (Max):
1	6V
Voltage - Output (Min/Fixed):	Voltage - Output (Max):
1.2V	
Voltage Dropout (Max):	Current - Output:
0.7V @ 1A	1A
Current - Quiescent (Iq):	PSRR:
Αμ 08	75dB ~ 55dB (1kHz ~ 10kHz)
Control Features:	Protection Features:
Enable	Over Current, Over Temperature
Operating Temperature:	Mounting Type:
-40°C ~ 85°C	Surface Mount
Package / Case:	Supplier Device Package:
8-SOIC (0.154", 3.90mm Width) Exposed Pad	8-SO-EP
Base Product Number:	
AP7361	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

AP7361C

5 OUT

GND

4 IN

1A LOW DROPOUT ADJUSTABLE AND FIXED-MODE REGULATOR WITH ENABLE

Pin Assignments

Description

The AP7361C is a 1A, adjustable and fixed output voltage, ultra-low dropout linear regulator with enable. The device includes pass element, error amplifier, band-gap reference, current limit and thermal shutdown circuitry. The device is turned on when EN pin is set to logic high level.

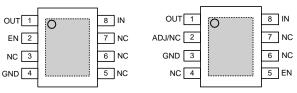
The characteristics of the low dropout voltage and low quiescent current make it suitable for low-to-medium power applications; for example, laptop computers, audio and video applications, and battery-powered devices. The typical quiescent current is approximately 60µA. Built-in current-limit and thermal-shutdown functions prevent IC from damage in fault conditions.


The AP7361C is available in U-DFN3030-8 (Type E), SOT89-5, SOT223, TO252 (DPAK) and SO-8EP packages.

Features

- Wide Input Voltage Range: 2.2V to 6.0V
- Output Voltage Accuracy: ±1%
- Very Low Dropout Voltage (3.3V): 360mV at 1A Typical
- Low Quiescent Current (IQ): 60µA Typical
- Adjustable Output Voltage Range: 0.8V to 5.0V
- Fixed Output Options: 1.0V, 1.2V, 1.5V, 1.8V, 2.5V, 2.8V and • 3 31/
- High PSRR: 75dB @ 1kHz
- Current Limit: 1.5A •
- Fold-Back Short Circuit Protection: 400mA •
- **Thermal Shutdown Protection** •
- Stable with MLCC, E-Cap, Tan-Cap or Solid Capacitor ≥ 2.2µF •
- Ambient Temperature Range: -40°C to +85°C
- Available in "Green" Molding Compound (No Br, Sb)
- Moisture Sensitivity: Level 1 Per J-STD-020
- Terminals:
 - SOT89-5/ SOT223/ SO-8EP/ TO252: Finish - Matte Tin Plated Leads, Solderable per MIL-STD-202. Method 208 @3)
 - U-DFN3030-8: Finish - NiPdAu over Copper Leads, Solderable per MIL-STD-202, Method 208 @4)
- Weight:
 - U-DFN3030-8: 0.017 grams (Approximate)
 - SOT89-5: 0.059 grams (Approximate)
 - SOT223: 0.113 grams (Approximate)
 - SO-8EP: 0.081 grams (Approximate)
 - TO252: 0.33 grams (Approximate)
- Diodes automotive grade parts (Q-suffix) are suitable for automotive applications requiring specific change control; these parts are AEC-Q100/101/200 qualified, PPAP capable, and manufactured in IATF16949:2016 certified facilities. https://www.diodes.com/quality/product-definitions/
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen- and Antimony-Free. "Green" Device (Note 3)

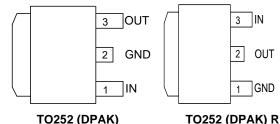
(Top View) (Top View) OUT 8 IN EN 1 1 NC NC 2 GND GND 2 NC ADJ/NC 6 3 GND 4 5 EN ADJ/NC 3 U-DFN3030-8 (Type E) (Top View) 3 OUT 2 GND



SOT223

SOT223R

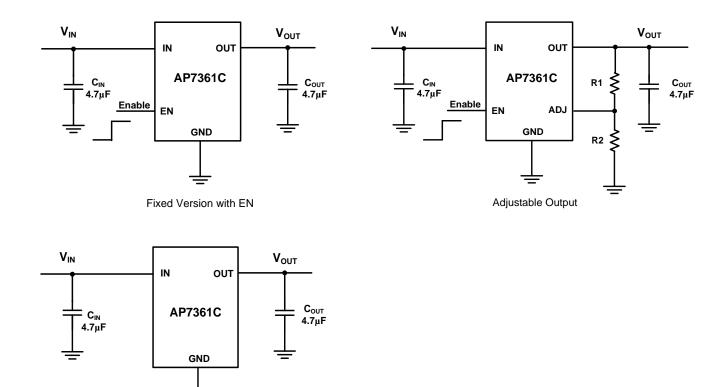
(Top View)



(Top View)

SO-8EPR

Applications

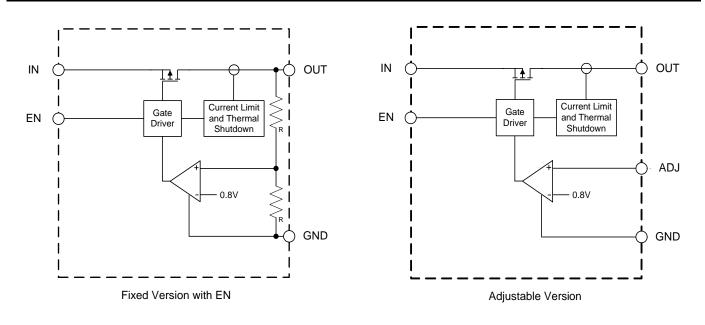

- LCD-TV, Monitor
- Set-Top-Box
- Home Electrical Appliances

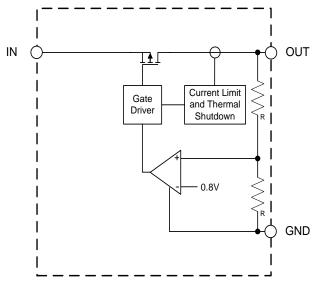
Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit

Fixed Version without EN


Pin Descriptions


	Pin Number							Pin	
U-DFN3030-8 (Type E)	SOT89-5	TO252 (DPAK)	TO252 (DPAK)R	SOT223	SOT223R	SO-8EP	SO-8EPR	Name	Function
8	4	1	3	1	3	8	8	IN	The input of the regulator. Bypass to ground through at least 1µF ceramic capacitor.
1	5	3	2	3	2	1	1	OUT	The output of the regulator. Bypass to ground through at least 2.2µF ceramic capacitor. For improved ac load response a larger capacitor is recommended.
4	2	2	1	2	1	4	3	GND	Ground
3	3	-	_	_	_	_	2	ADJ/NC	Adjustable voltage version only – a resistor divider from this pin to the OUT pin and ground sets the output voltage.
5	1	-	-	-	-	2	5	EN	Enable input, active high
2, 6, 7	-	-	-	-	-	3, 5, 6, 7	4, 6, 7	NC	No connection

AP7361C

Functional Block Diagram

Fixed Version without EN

Symbol	Para	neter	Rating	Unit	
V _{IN}	Input Voltage	Input Voltage		V	
-	OUT, ADJ, EN Voltage		V _{IN} +0.3	V	
TJ	Operating Junction Temperature R	Range	-40 to +150	°C	
T _{STG}	Storage Temperature Range		-65 to +150	°C	
P _D	Power Dissipation		Internally limited by maximum junction temperature of +150°C		
		U-DFN3030-8 (Type E)	1700		
		TO252 (DPAK)	1250		
PD	Power Dissipation	SOT223	1100	mW	
		SOT89-5	800		
		SO-8EP	1190	7	
ESD HBM	Human Body Model ESD Protection	Human Body Model ESD Protection		KV	
ESD MM	Machine Model ESD Protection (N	hine Model ESD Protection (Note 5)		V	

Absolute Maximum Ratings (@ T_A = +25°C, unless otherwise specified.) (Note 4)

Notes: 4. Stresses greater than the 'Absolute Maximum Ratings' specified above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.

5. ESD MM rating at 150V for EN pin in SOT89-5 package.

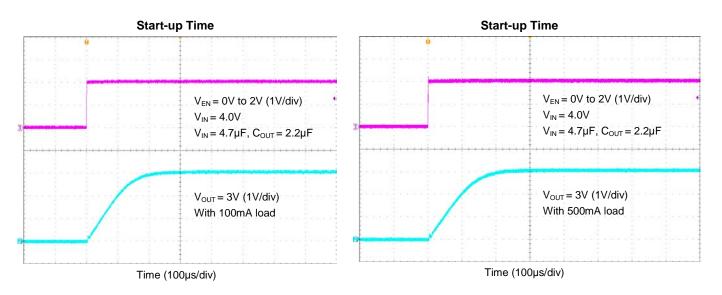
Recommended Operating Conditions (@ T_A = +25°C, unless otherwise specified.)

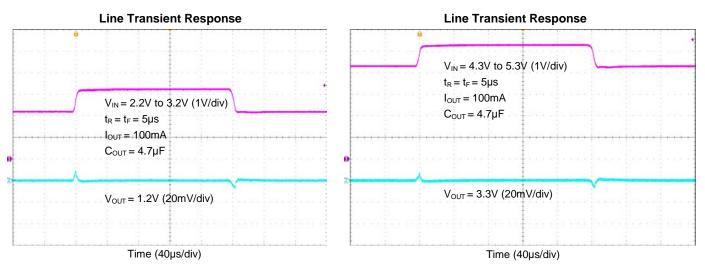
Symbol	Parameter	Min	Мах	Unit
VIN	Input Voltage	2.2	6.0	V
Vout	Output Voltage	0.8	5.0	V
IOUT	I _{OUT} Output Current (Note 6)		1.0	A
T _A	Operating Ambient Temperature	-40	+85	°C

Notes: 6. The device maintains a stable, regulated output voltage without a load current. When the output current is large, attention should be given to the limitation of the package power dissipation.

Symbol	Parameter	Test Con	ditions	Min	Тур	Max	Unit
V _{REF}	FB Reference Voltage, ADJ pin	I _{OUT} = 10mA, T _A = +25°C		0.792	0.8	0.808	V
I _{ADJ}	ADJ Pin Leakage Current	-		-	0.1	0.5	μA
lq	Input Quiescent Current	Enabled, I _{OUT} = 0A		-	60	80	μA
I _{SHDN}	Input Shutdown Current	$V_{EN} = 0V, I_{OUT} = 0A$		-1	0.05	1	μA
M	Output Voltage Accuracy	$I_{OUT} = 100 \text{mA},$	1.0V≤V _{OUT} <1.5V	V _{OUT} (s)- 0.015	V _{OUT} (s)	V _{OUT} (s)+ 0.015	- v
V _{OUT}	Output voltage Accuracy	T _A = +25°C	1.5 V≤V _{OUT} ≤3.3V	V _{OUT} (s)* 0.99	V _{OUT} (s)	V _{OUT} (s)* 1.01	v
ΔVουτ	Line Degulation	$V_{IN} = V_{OUT} + 1V$ to 5.5V,	T _A = +25°C	-	0.01	0.1	0/ 1/
$\Delta V_{\text{IN}} \times V_{\text{OUT}}$	Line Regulation	I _{OUT} = 100mA	-40°C ≤T _A ≤ +85°C	-	-	0.2	- %/V
ΔV _{OUT} / V _{OUT}	Load Regulation	I _{OUT} from 1.0mA to 1A	1.2V <v<sub>OUT≤ 3.3V</v<sub>	-1.0	-	1.0	%
			1.0V _ V _{OUT} ≤1.2V	-1.5	-	1.5	%
			1.0V≤V _{OUT} <1.1V	-	710	750	
			1.1V≤V _{OUT} <1.2V	-	600	640	1
		1.2V≤V _{OUT} <1.3V	-	500	540	1	
		I _{OUT} = 300mA	1.3V≤V _{OUT} <1.4V	-	400	440	-
			1.4V≤V _{OUT} <1.5V	_	300	340	
			1.5V≤V _{OUT} <2.6V	_	200	250	
		2.6V≤V _{OUT} ≤3.3V	_	90	140	-	
Vdropout	VDROPOUT Dropout Voltage (Note 7)	I _{OUT} = 1A	1.0V≤V _{OUT} <1.1V	_	840	-	mV
			1.1V≤V _{OUT} <1.2V	_	780	-	
			1.2V≤V _{OUT} <1.3V	_	710	-	
			1.3V≤V _{OUT} <1.4V	_	660	-	
			1.4V≤V _{OUT} <1.5V	_	610	-	
			1.5V≤V _{OUT} <2.0V	_	570	_	
			2.0V≤V _{OUT} <2.6V	-	440	-	
			2.6V≤V _{OUT} ≤3.3V	-	340	_	
VIL	EN Input Logic Low Voltage	-		0	_	0.3	V
VIH	EN Input Logic High Voltage	-		1.0	_	VIN	V
R _{ENPD}	EN Pull-Down Resistor	-		_	3.0	-	MΩ
I _{EN}	EN Input Leakage Current	$V_{IN} = 5.5V, V_{EN} = 0V$		-0.1	_	0.1	μA
R _{PD}	Output Discharge Resistor	V _{OL} =1V		-	100	-	Ω
lout	Maximum Output Current	V _{IN} = V _{OUT} +1V		1.0	-	-	Α
ILIMIT	Current Limit	$V_{IN} = V_{OUT} + 1V(V_{IN MINI} =$	2.2V)	1.1	1.5	-	Α
ISHORT	Short-Circuit Current	V _{IN} = V _{OUT} +1V, Output V		-	400	-	mA
	Power Supply Rejection Ratio	$f = 1$ kHz, $I_{OUT} = 100$ mA	<u> </u>	_	75	_	<u> </u>
PSRR	(Note 8)	$f = 10 \text{ kHz}, I_{OUT} = 100 \text{ mA}$		-	55	-	dB
ts⊤	Start-Up Time	$V_{OUT} = 3V, C_{OUT} = 2.2\mu F, R_L = 30\Omega$		-	150	-	μs
$\frac{\Delta V_{\text{OUT}}}{\Delta T_{\text{A}} \times V_{\text{OUT}}}$	Output Voltage Temperature Coefficient	$I_{OUT} = 100 \text{mA}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		_	±100	_	ppm/
T _{SHDN}	Thermal Shutdown Threshold			_	150	_	°C
T _{HYS}	Thermal Shutdown Hysteresis			_	20		°C

Notes: 7. Dropout voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value. This parameter only applies to output voltage above 1.2V since minimum V_{IN} = 2.2V. 8. For V_{IN} \ge 2.5V and V_{IN} = V_{OUT} +1V. For V_{IN} < 2.5V, the PSRR performance may be reduced.

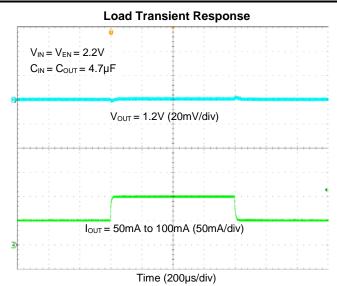


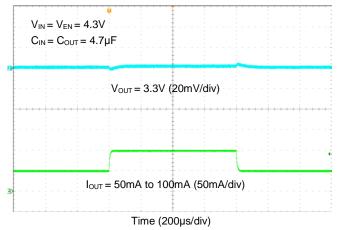

Electrical Characteristics (@ $T_A = +25^{\circ}C$, $V_{IN} = V_{OUT} + 1V$, $C_{IN} = 4.7\mu$ F, $C_{OUT} = 4.7\mu$ F, $V_{EN} = V_{IN}$, unless otherwise specified.) (Cont.)

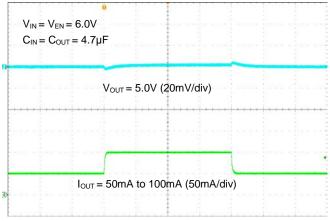
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
		U-DFN3030-8 (Type E) (Note 9)	-	70	-	
		TO252 (DPAK) (Note 9)	-	95	-	
θ _{JA}	Thermal Resistance Junction-to- Ambient	SOT223 (Note 9)	-	110	_	°C/W
-	Ambient	SOT89-5 (Note 9)	-	150	_	
		SO-8EP (Note 9)	-	100	_	

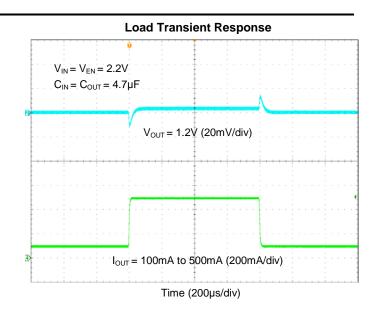
Notes: 9. Test condition: U-DFN3030-8 (Type E), SO-8EP devices are mounted on 2"x2", FR-4 substrate PCB, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane. TO252(DPAK) devices are mounted on 2"x2" FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout. For SOT223, the device is mounted on FR-4 substrate PC board, with minimum recommended pad layout. SOT89-5 devices are mounted on 1"x1" FR-4 substrate PC board, with minimum recommended pad layout.

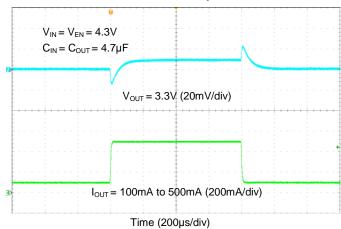
Performance Characteristics

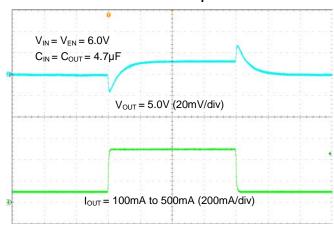



AP7361C Document number: DS37274 Rev. 5 - 2


Performance Characteristics (Cont.)

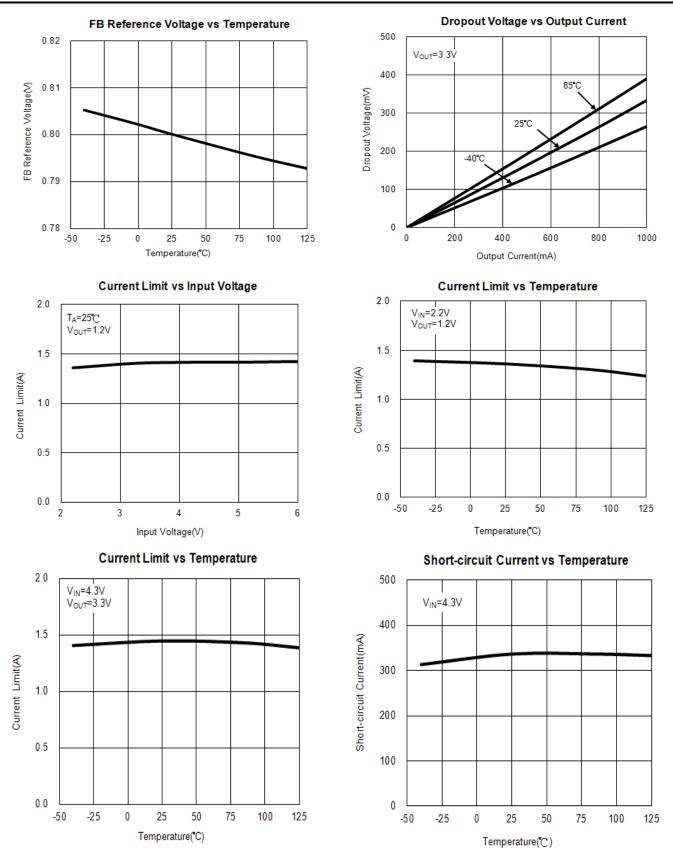

Load Transient Response





Time (200µs/div)

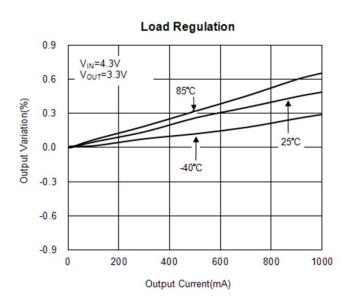
Load Transient Response

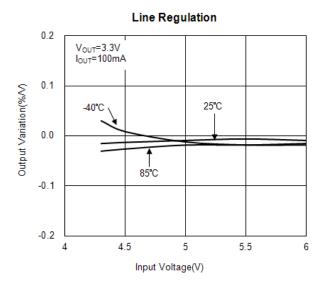


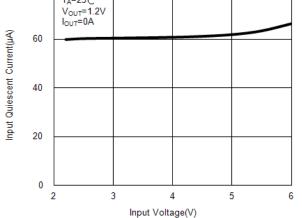
Time (200µs/div)

Load Transient Response

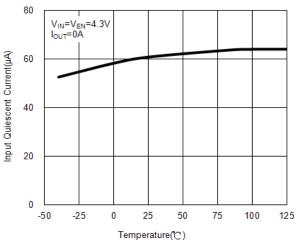
Performance Characteristics (Cont.)

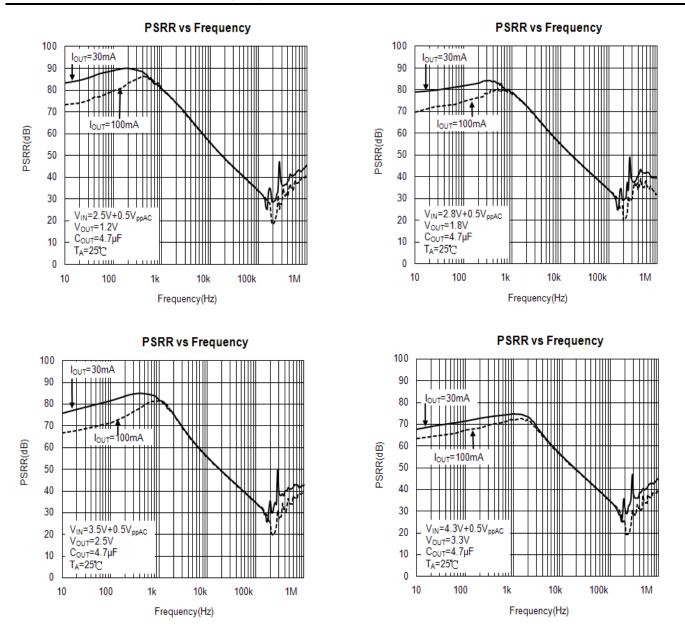



AP7361C Document number: DS37274 Rev. 5 - 2



AP7361C


Performance Characteristics (Cont.)



Input Quiescent Current vs Temperature

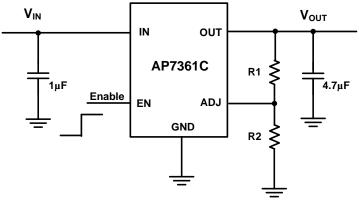
Performance Characteristics (Cont.)

Application Information

Input Capacitor

A 1µF ceramic capacitor is recommended between the IN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and reduce noise. For PCB layout, a wide copper trace is required for both IN and GND pins. A lower ESR capacitor type allows the use of less capacitance, while higher ESR type requires more capacitance.

Output Capacitor


The output capacitor is required to stabilize and improve the transient response of the LDO. The AP7361C is stable with very small ceramic output capacitors. Using a ceramic capacitor value that is at least 2.2µF on the output ensures stability. Higher capacitance values help to improve line and load transient response. The output capacitance may be increased to keep low undershoot and overshoot. Output capacitor must be placed as close as possible to OUT and GND pins.

Application Information (Cont.)

Adjustable Operation

The AP7361C provides output voltage from 0.8V to 5.0V through external resistor divider as shown below.

Adjustable Output

The output voltage is calculated by:

$$\mathbf{V}_{\rm OUT} = \mathbf{V}_{\rm REF} \left(1 + \frac{\mathbf{R}_1}{\mathbf{R}_2} \right)$$

Where V_{REF} = 0.8V (the internal reference voltage)

Rearranging the equation will give the following that is used for adjusting the output to a particular voltage:

$$R1 = R2 \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$$

To maintain the stability of the internal reference voltage, R2 needs to be kept smaller than 80kΩ.

No Load Stability

Other than external resistor divider, no minimum load is required to keep the device stable. The device will remain stable and regulated in no load condition.

ON/OFF Input Operation

The ON/OFF feature is not available in the SOT223 and TO252 (DPAK) packages.

The AP7361C is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time. To ensure proper operation, the signal source used to drive the EN pin must be able to swing above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under V_{IL} and $V_{IH.}$

Current Limit Protection

When output current at OUT pin is higher than current limit threshold, the current limit protection will be triggered and clamp the output current to prevent over-current and to protect the regulator from damage due to overheating.

Short Circuit Protection

When OUT pin is short-circuit to GND, short circuit protection will be triggered and clamp the output current to approximately 400mA. Full current is restored when the output voltage exceeds 15% of V_{OUT}. This feature protects the regulator from over-current and damage due to overheating.

Application Information (Cont.)

Thermal Shutdown Protection

Thermal protection disables the output when the junction temperature rises to approximately +150°C, allowing the device to cool down. When the junction temperature reduces to approximately +130°C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Ultra Fast Start-up

After enabled, the AP7361C is able to provide full power in as little as tens of microseconds, typically 200µs, without sacrificing low ground current. This feature will help load circuitry move in and out of standby mode in real time, eventually extend battery life for mobile phones and other portable devices.

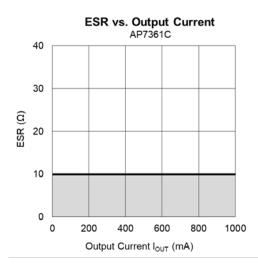
Low Quiescent Current

The AP7361C, consuming only around 60µA for all input range, provides great power saving in portable and low power applications.

Power Dissipation

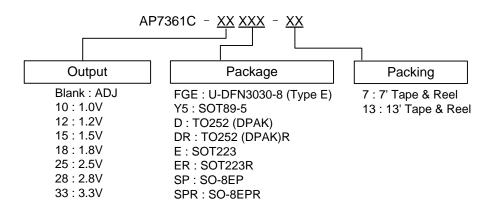
The device power dissipation and proper sizing of the thermal plane that is connected to the thermal pad is critical to avoid thermal shutdown and ensure reliable operation. Power dissipation of the device depends on input voltage and load conditions and can be calculated by:

 $P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$


The maximum power dissipation, handled by the device, depends on the maximum junction to ambient thermal resistance, maximum ambient temperature, and maximum device junction temperature, which can be calculated by the equation in the following:

$$P_{D}(\max@T_{A}) = \frac{(+150^{\circ}C - T_{A})}{R_{\theta JA}}$$

ESR vs. Output Current

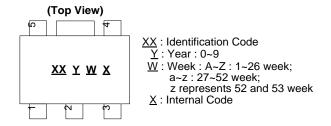

Ceramic type output capacitor is recommended for this series; however, the other output capacitors with low ESR also can be used. The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The stable region for the safety operating temperature (-40°C ~ +85°C) is marked as the gray area in the graph.

Measurement conditions: Frequency Band: 10Hz to 2MHz, Temperature: -40°C to +85°C.

Ordering Information

Part Number	Package Code	Packaging	7"/13" Tape	and Reel
Fart Number	Fackage Code	Fackaying	Quantity	Part Number Suffix
AP7361C-XXFGE-7	FGE	U-DFN3030-8 (Type E)	3000/Tape & Reel	-7
AP7361C-XXY5-13	Y5	SOT89-5	2500/Tape & Reel	-13
AP7361C-XXD-13	D	TO252 (DPAK)	2500/Tape & Reel	-13
AP7361C-XXDR-13	DR	TO252 (DPAK)R	2500/Tape & Real	-13
AP7361C-XXE-13	E	SOT223	2500/Tape & Reel	-13
AP7361C-XXER-13	ER	SOT223R	2500/Tape & Reel	-13
AP7361C-XXSP-13	SP	SO-8EP	2500/Tape & Reel	-13
AP7361C-XXSPR-13	SPR	SO-8EPR	2500/Tape & Reel	-13

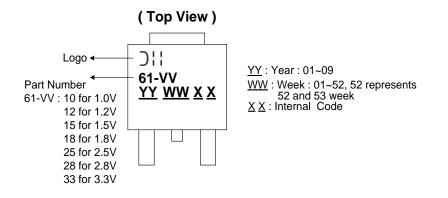
Marking Information


(1) U-DFN3030-8 (Type E)

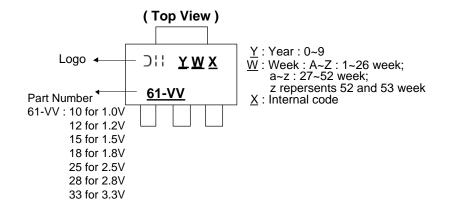
 $\begin{array}{l} \underline{XX}: \mbox{Identification Code} \\ \underline{Y}: \mbox{Year}: \mbox{0-9} \\ \underline{W}: \mbox{Week}: \mbox{A-Z}: \mbox{1-26} week; \\ \mbox{a-z}: \mbox{27-52} week; \mbox{z represents} \\ \mbox{52} \mbox{ and } \mbox{53} week \\ \underline{X}: \mbox{Internal Code} \end{array}$

Device	Package	Identification Code
AP7361C-ADJ	U-DFN3030-8 (Type E)	SH
AP7361C-10	U-DFN3030-8 (Type E)	SJ
AP7361C-12	U-DFN3030-8 (Type E)	SK
AP7361C-15	U-DFN3030-8 (Type E)	SV
AP7361C-18	U-DFN3030-8 (Type E)	SW
AP7361C-25	U-DFN3030-8 (Type E)	SX
AP7361C-28	U-DFN3030-8 (Type E)	SY
AP7361C-33	U-DFN3030-8 (Type E)	SZ

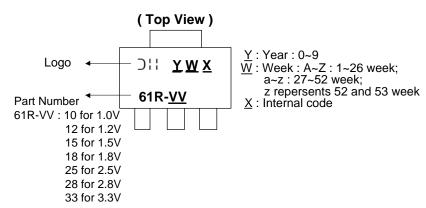
(2) SOT89-5


Device	Package	Identification Code
AP7361C-ADJ	SOT89-5	KR
AP7361C-10	SOT89-5	KS
AP7361C-12	SOT89-5	KT
AP7361C-15	SOT89-5	KU
AP7361C-18	SOT89-5	KV
AP7361C-25	SOT89-5	KW
AP7361C-28	SOT89-5	КХ
AP7361C-33	SOT89-5	KZ

Marking Information (Cont.)


(3) TO252 (DPAK)

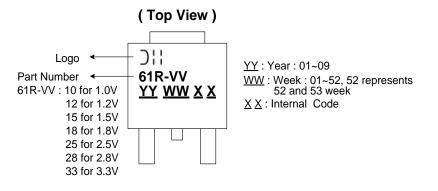
Pin 1: IN, Pin 2: GND, Pin 3: OUT


(4) SOT223

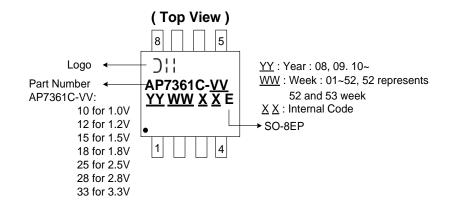
Pin 1: IN, Pin 2: GND, Pin 3: OUT

(5) SOT223R

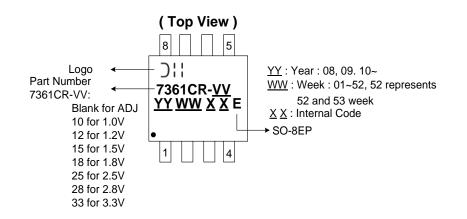
Pin 1: GND, Pin 2: OUT, Pin 3: IN



Marking Information (Cont.)


(6) TO252 (DPAK)R

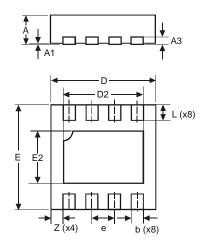
Pin 1: GND, Pin 2: OUT, Pin 3: IN


(7) SO-8EP

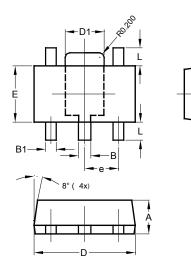
Pin 1: OUT, Pin 2: EN, Pins 3, 5, 6 and 7: NC, Pin 4: GND, Pin 8: IN

(8) SO-8EPR

Pin 1: OUT, Pin 2: ADJ/NC, Pin 3: GND, Pins 4, 6 and 7: NC, Pin 5: EN, Pin 8: IN



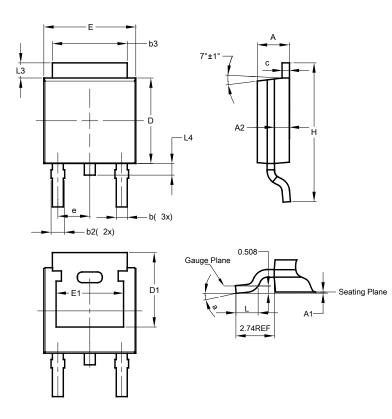
Package Outline Dimensions (All dimensions in mm.)


Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: U-DFN3030-8 (Type E)

U-DFN3030-8						
	Туре Е					
Dim	Dim Min Max Typ					
Α	0.57	0.63	0.60			
A1	0	0.05	0.02			
A3	_	_	0.15			
b	0.20	0.30	0.25			
D	2.95	3.05	3.00			
D2	2.15	2.35	2.25			
Е	2.95	3.05	3.00			
е	-	-	0.65			
E2	1.40	1.60	1.50			
L	0.30	0.60	0.45			
Ζ	_	_	0.40			
All I	Dimens	sions ir	n mm			

(2) Package Type: SOT89-5

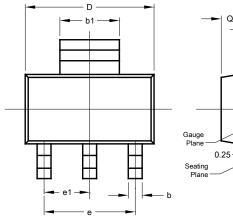

SOT89-5			
Dim	Min	Max	Тур
Α	1.40	1.60	1.50
в	0.50	0.62	0.56
B1	0.44	0.54	0.48
с	0.35	0.43	0.38
D	4.40	4.60	4.50
D1	1.62	1.83	1.733
Е	2.40	2.60	2.50
e	-	-	1.50
H	3.95	4.25	4.10
1	0.65	0.95	0.80
All Dimensions in mm			

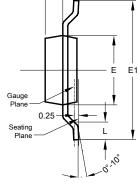
Package Outline Dimensions (Cont.) (All dimensions in mm.)

Please see http://www.diodes.com/package-outlines.html for the latest version.

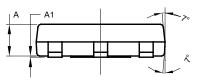
(3) Package Type: TO252 (DPAK)

TO252 (DPAK)				
Dim	Min	Max	Тур	
Α	2.19	2.39	2.29	
A1	0.00	0.13	0.08	
A2	0.97	1.17	1.07	
b	0.64	0.88	0.783	
b2	0.76	1.14	0.95	
b3	5.21	5.46	5.33	
С	0.45	0.58	0.531	
D	6.00	6.20	6.10	
D1	5.21	-	-	
е	-	-	2.286	
Е	6.45	6.70	6.58	
E1	4.32	-	-	
Η	9.40	10.41	9.91	
L	1.40	1.78	1.59	
L3	0.88	1.27	1.08	
L4	0.64	1.02	0.83	
а	0°	10°	-	
All Dimensions in mm				

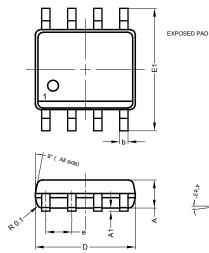


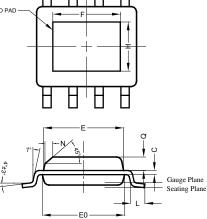

AP7361C

Package Outline Dimensions (Cont.) (All dimensions in mm.)


Please see http://www.diodes.com/package-outlines.html for the latest version.

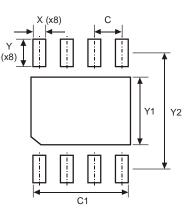
(4) Package Type: SOT223



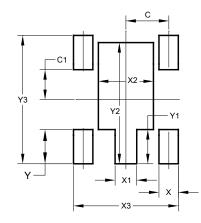

С

SOT223				
Dim	Min	Max	Тур	
Α	1.55	1.65	1.60	
A1	0.010	0.15	0.05	
b	0.60	0.80	0.70	
b1	2.90	3.10	3.00	
С	0.20	0.30	0.25	
D	6.45	6.55	6.50	
Е	3.45	3.55	3.50	
E1	6.90	7.10	7.00	
е	-	-	4.60	
e1	-	-	2.30	
L	0.85	1.05	0.95	
Q	0.84	0.94	0.89	
All Dimensions in mm				

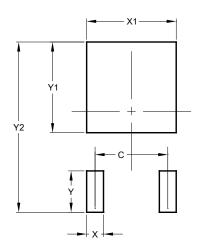
(5) Package Type: SO-8EP


SO-8EP				
Dim	Min	Max	Тур	
Α	1.40	1.50	1.45	
A1	0.00	0.13	-	
b	0.30	0.50	0.40	
С	0.15	0.25	0.20	
D	4.85	4.95	4.90	
Е	3.80	3.90	3.85	
E0	3.85	3.95	3.90	
E1	5.90	6.10	6.00	
е	-	-	1.27	
F	2.75	3.35	3.05	
Н	2.11	2.71	2.41	
L	0.62	0.82	0.72	
Ν	-	-	0.35	
Q	0.60	0.70	0.65	
All Dimensions in mm				

Suggested Pad Layout


Please see http://www.diodes.com/package-outlines.html for the latest version.

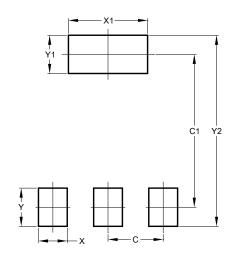
(1) Package Type: U-DFN3030-8 (Type E)


Dimensions	Value (in mm)
С	0.65
C1	2.35
Х	0.30
Y	0.65
Y1	1.60
Y2	2.75

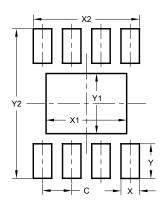
(2) Package Type: SOT89-5

Dimensions	Value	
Dimensions	(in mm)	
С	1.500	
C1	1.050	
Х	0.680	
X1	0.760	
X2	1.930	
X3	3.680	
Y	1.200	
Y1	1.200	
Y2	4.250	
Y3	4.500	

(3) Package Type: TO252 (DPAK)


Dimensions	Value (in mm)	
С	4.572	
Х	1.060	
X1	5.632	
Y	2.600	
Y1	5.700	
Y2 10.700		

Suggested Pad Layout (Cont.)


Please see http://www.diodes.com/package-outlines.html for the latest version.

(4) Package Type: SOT223

Dimensions	Value (in mm)	
С	2.30	
C1	6.40	
Х	1.20	
X1	3.30	
Y	1.60	
Y1	1.60	
Y2	8.00	

(5) Package Type: SO-8EP

Dimensions	Value (in mm)	
С	1.270	
Х	0.802	
X1	3.502	
X2	4.612	
Y	1.505	
Y1	2.613	
Y2	6.500	

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.