

LM2903AS-13 Datasheet

www.digi-electronics.com

LM2903AS-13-DG
Diodes Incorporated
LM2903AS-13
IC COMPARATOR 2 DIFF 850
Comparator General Purpose 8-SO

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
LM2903AS-13	Diodes Incorporated
Series:	Product Status:
	Active
Туре:	Number of Elements:
General Purpose	2
Output Type:	Voltage - Supply, Single/Dual (±):
-	2V ~ 36V, ±1V ~ 18V
Voltage - Input Offset (Max):	Current - Input Bias (Max):
2mV @ 5V	0.25µA @ 5V
Current - Output (Typ):	Current - Quiescent (Max):
16mA @ 5V	1.7mA
CMRR, PSRR (Typ):	Propagation Delay (Max):
Hysteresis:	Operating Temperature:
-	-40°C ~ 125°C
Package / Case:	Mounting Type:
8-SOIC (0.154", 3.90mm Width)	Surface Mount
Supplier Device Package:	Base Product Number:
8-50	LM2903

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	3 (168 Hours)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.33.0001	

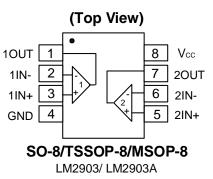
DUAL AND QUAD DIFFERENTIAL COMPARATORS

Description

The LM2901/2903 series comparators consist of four and two independent precision voltage comparators with very low input offset voltage specification. They are designed to operate from a single power supply over a wide range of voltages; however operation from split power supplies is also possible. They offer low power supply current independent of the magnitude of the power supply voltage.

The LM2901/2903 series comparators are designed to directly interface with TTL and CMOS. When operating from both plus and minus power supplies, the LM2901/2903 series comparators will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

The dual devices are available in SO-8, TSSOP-8, and MSOP-8, and the quad devices available in SO-14 and TSSOP-14 with industry standard pinouts. Both use green mold compound as standard.

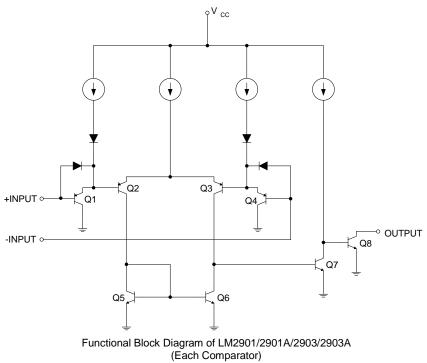

Features

- Wide Power Supply Range:
 - Single Supply: 2V to 36V
 - Dual Supplies: ±1.0V to ±18V
- Very Low Supply Current Drain—Independent of Supply Voltage
 - LM2903: 0.6mA
 - LM2901: 0.9mA
 - Low Input Bias Current: 25nA
- Low Input Offset Current: ±5nA
- Typical Offset Voltage:
 - Non-A Device: 2mV
 - A Device: 1mV
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to the Power Supply Voltage
- Low Output Saturation Voltage:
 - LM2903: 200mV at 4mA
 - LM2901: 100mV at 4mA
- Output Voltage Compatible with TTL, MOS and CMOS
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Assignments



SO-14/TSSOP-14 LM2901/ LM2901A

Schematic Diagram

Pin Descriptions			
LM2901, LM2901A			
Pin Name	Pin #	Function	
10UT	1	Channel 1 Output	
20UT	2	Channel 2 Output	
V _{CC}	3	Chip Supply Voltage	
2IN-	4	Channel 2 Inverting Input	
2IN+	5	Channel 2 Non-Inverting Input	
1IN-	6	Channel 1 Inverting Input	
1IN+	7	Channel 1 Non-Inverting Input	
3IN-	8	Channel 3 Inverting Input	
3IN+	9	Channel 3 Non-Inverting Input	
4IN-	10	Channel 4 Inverting Input	
4IN+	11	Channel 4 Non-Inverting Input	
GND	12	Ground	
4OUT	13	Channel 4 Output	
3OUT	14	Channel 3 Output	
LM2903, LM2903A			
10UT	1	Channel 1 Output	
1IN-	2	Channel 1 Inverting Input	
1IN+	3	Channel 1 Non-Inverting Input	
GND	4	Ground	
2IN+	5	Channel 2 Non-Inverting Input	
2IN-	6	Channel 2 Inverting Input	
20UT	7	Channel 2 Output	
V _{CC}	8	Chip Supply Voltage	

Absolute Maximum Ratings (Note 4) (@T_A = +25°C, unless otherwise specified.)

Symbol	F	Rating	Unit	
V _{CC}	Supply Voltage		36	V
VID	Differential Input Voltage		36	V
VIN	Input Voltage		-0.3 to +36	V
I _{IN}	Input Current (V _{IN} < -0.3V)		50	mA
Vo	Output Voltage		36	V
lo	Output Current		20	mA
_	Duration of Output Short Circuit to	Ground (Note 5)	Unlimited	_
		SO-8	110	
	Deckage Thermal Impedance	MSOP-8	160	
θ _{JA}	θ _{JA} Package Thermal Impedance (Note 6)	TSSOP-8	185	°C/W
		SO-14	100	
		TSSOP-14	129	
		SO-8	8.5	
		MSOP-8	25	
θ_{JC}	Package Thermal Impedance (Note 6)	TSSOP-8	17	°C/W
	(1000 8)	SO-14	16	
		TSSOP-14	6.3	
T _A	Operating Temperature Range	•	-40 to +125	°C
TJ	Operating Junction Temperature		150	°C
T _{ST}	Storage Temperature Range		-65 to +150	°C
T _{LEAD}	Lead Temperature (Soldering, 10 s	Lead Temperature (Soldering, 10 seconds)		°C
ESD	Human Body Mode ESD Protection	n (Note 7)	500	V
ESD Machine Mode ESD Protection			100	V

Notes: 4. Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.

5. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

6. Maximum power dissipation is a function of T_{J(MAX)}, θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is $P_{D} = (T_{J(MAX)} - T_{A})/\theta_{JA}.$ Operating at the absolute maximum T_J of 150°C can affect reliability. 7. Human body model, 1.5k Ω in series with 100pF.

Electrical Characteristics (Notes 8 & 9) (@V_{CC} = 5.0V, GND = 0V, T_A = +25°C, unless otherwise specified.)

.M2901, LI	M2901A							
	Parameter	Conditio	ns	TA	Min	Тур	Max	Unit
		V _{IC} = V _{CMR} Min,	Non-A Device	T _A = +25°C	—	2	7	
V _{IO}	Input Offset Voltage	$V_0 = 1.4V$,	Non-A Device	Full Range	_	_	15	mV
۷IO	input Onset Voltage	$V_{CC} = 5V$ to $30V$	A-Suffix Device	$T_A = +25^{\circ}C$	—	1	2	IIIV
		(Note 10)	A-Sullix Device	Full Range	_	_	4	
IB	Input Bias Current	$I_{\text{IN+}} \text{ or } I_{\text{IN-}}$ with OUT in Li	near Range,	T _A = +25°C	—	25	250	nA
ıВ		V _{CM} = 0V (Note 11)		Full Range	—	_	500	10.1
I _{IO}	Input Offset Current	I _{IN+} - I _{IN-} , V _{CM} = 0V		T _A = +25°C	—	5	50	nA
νO		11N+ - 11N-, VCM - 0V		Full Range	—	_	200	
	Input Common-Mode			T _A = +25°C	0 to V _{CC} -1.5	—	—	
VCMR	Voltage Range	V _{CC} = 30V (Note 12)		Full Range	0 to V _{CC} -2		_	V
			V 20V	T _A = +25°C	—	1.2	2.5	
	Supply Current	$V_{CC} = 30V$ Full Ra	Full Range	_	_	3.5	~^^	
lcc	(Four Comparators)	Quad Channels		T _A = +25°C	—	0.9	2	mA
			$V_{\rm CC} = 5V$	Full Range	—		3.0	
A _V	Voltage Gain	$V_{CC} = 15V$, $V_{OUT} = 1V$ to $R_L \ge 15k\Omega$,	11V,	T _A = +25°C	50	200	_	V/mV
_	Large Signal Response time	V_{IN} = TTL Logic Swing, V V _{RL} = 5V, R _L = 5.1kΩ	/ _{REF} = 1.4V,	T _A = +25°C	_	300	—	ns
_	Response Time	$V_{RL} = 5V, R_{L} = 5.1k\Omega$ (No	ote 13)	T _A = +25°C	—	1.3	_	μs
I _{O(SINK)}	Output Sink Current	$V_{IN-} = 1V, V_{IN+} = 0, V_O \le 1.5V$		T _A = +25°C	6	16	_	mA
N		$V_{IN-} = 1V, V_{IN+} = 0, I_{SINK} \le 4mA$		T _A = +25°C	_	100	400	.,
VSAT	V _{SAT} Saturation Voltage			Full Range	_		700	mV
	Output Lookogo Current	$V_{IN-} = 0V, V_{IN+} = 1, V_O =$	5V	T _A = +25°C	—	0.1	_	nA
I _{O(LEAK)}	Output Leakage Current	$V_{IN-} = 0V, V_{IN+} = 1, V_O =$	30V	Full Range	_		1	μA
VID	Differential Input Voltage	All V _{IN} ≥0V (or V- if used) (Note 14)	Full Range	_	_	36	V

Notes:

Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
 All limits are guaranteed by testing or statistical analysis. Limits over the full temperature are guaranteed by design, but not tested in production.

10. $V_0 \cong 1.4V$, $R_s = 0\Omega$ with V_{cc} from 5V to 30V;

11. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

12. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (@ +25°C). The upper end of the common-mode voltage range is V_{cc} -1.5V (@ +25°C), but either or both inputs can go to +36V without damage, independent of the magnitude of V_{cc} . 13. The response time specified is for a 100mV step input with 5mV overdrive. For larger overdrive signals 300ns can be obtained, see typical performance

characteristics.
14. Positive excursions of input voltage may exceed the power supply level. As long as other voltages remain within the common mode range, the comparator will provide a proper output stage. The low voltage state must not be less than -0.3V (or 0.3V below the magnitude of the negative power supply, if used).

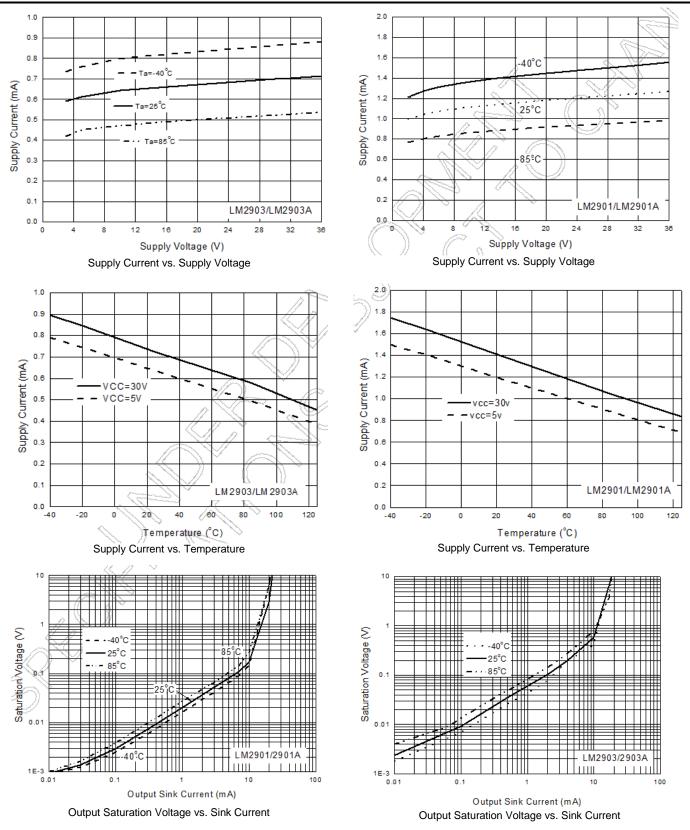
Electrical Characteristics (Notes 8 & 9) (@V_{CC} = 5.0V, GND = 0V, T_A = +25°C, unless otherwise specified.)

	Parameter	Condit	ions	TA	Min	Тур	Max	Unit
		V _{IC} = V _{CMR} Min,		T _A = +25°C	_	2	7	
.,	Input Offert Valtage	$V_0 = 1.4V$,	Non-A Device	Full Range	—	_	15	mV
V _{IO}	Input Offset Voltage	$V_{CC} = 5V$ to $=30V$	A-Suffix Device	T _A = +25°C	—	1	2	mv
		(Note 10)	A-Sullix Device	Full Range	—	_	4	
IB	Input Bias Current	I_{IN+} or I_{IN-} with OUT ir	n Linear Range,	T _A = +25°C	—	25	250	nA
ıВ	input bias Current	V _{CM} = 0V (Note 11)		Full Range	—	—	500	IIA
l.a	Input Offset Current	I _{IN+} - I _{IN-} , V _{CM} = 0V		$T_A = +25^{\circ}C$	—	5	50	nA
I _{IO}	input Onset Guirent	$\eta_{N+} - \eta_{N-}, v_{CM} = 0v$		Full Range	—	_	200	
				T _A = +25°C	0 to	_	_	
VCMR	Input Common-Mode Voltage	V _{CC} = 30V (Note 12)		14 - 120 0	V _{CC} -1.5			V
· OWIN	Range			Full Range	0 to	_	_	
					V _{CC} -2		47	
		R _L = ∞ on	$V_{CC} = 30V$	T _A = +25°C	—	0.7	1.7	
Icc	Supply Current			Full Range	—	_	3.0	mA
		Both Channels	$V_{CC} = 5V$	T _A = +25°C	—	0.6	1	
				Full Range	—	_	2.0	
A_V	Voltage Gain	V _{CC} = 15V, V _{OUT} = 1V R _L ≥ 15kΩ,	to 11V,	T _A = +25°C	50	200	—	V/mV
_	Large Signal Response Time	V_{IN} = TTL Logic Swing V_{RL} = 5V, R _L = 5.1k Ω	g, V _{REF} = 1.4V,	T _A = +25°C	—	300	_	ns
	Response Time	$V_{RL} = 5V, R_L = 5.1k\Omega$	(Note 13)	T _A = +25°C	—	1.3	_	μs
I _{O(SINK)}	Output Sink Current	$V_{IN-} = 1V, V_{IN+} = 0, V_{C}$	_D ≤ 1.5V	T _A = +25°C	6	16	_	mA
. /	Caturation Maltana			T _A = +25°C	—	200	400	
V _{SAT}	Saturation Voltage	$V_{IN-} = 1V, V_{IN+} = 0, I_{SINK} \le 4mA$		Full Range	_	_	700	mV
		$V_{IN-} = 0V, V_{IN+} = 1, V_{C}$	o = 5V	T _A = +25°C	—	0.1	—	nA
I _{O(LEAK)}	Output Leakage Current	$V_{IN-} = 0V, V_{IN+} = 1, V_0$	_D = 30V	Full Range	—	_	1	μA
V _{ID}	Differential Input Voltage	All V _{IN} ≥0V (or V- if us	ed) (Note 14)	Full Range	_		36	V

Notes:

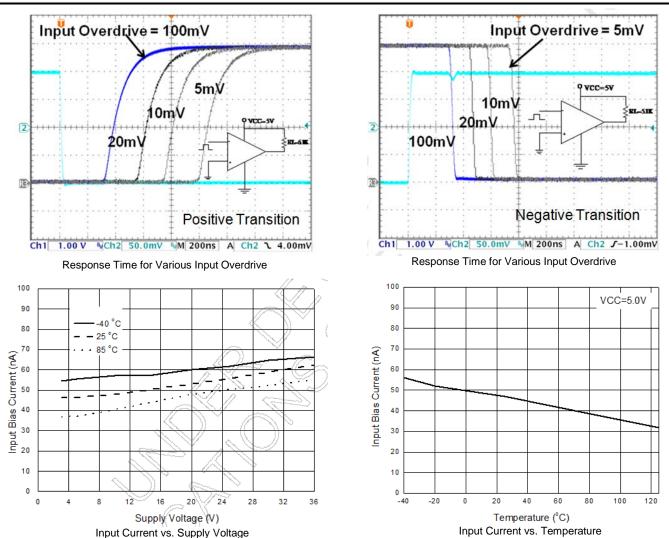
Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
 All limits are guaranteed by testing or statistical analysis. Limits over the full temperature are guaranteed by design, but not tested in production.

9. All limits are guaranteed by testing of statistica 10. V_O \cong 1.4V, R_S = 0Ω with V_{CC} from 5V to 30V;


11. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

12. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (@ +25°C). The upper end of the common-mode voltage range is V_{cc} -1.5V (@ +25°C), but either or both inputs can go to +36V without damage, independent of the magnitude of V_{cc} . 13. The response time specified is for a 100mV step input with 5mV overdrive. For larger overdrive signals 300ns can be obtained, see typical performance

characteristics.
14. Positive excursions of input voltage may exceed the power supply level. As long as other voltages remain within the common mode range, the comparator will provide a proper output stage. The low voltage state must not be less than -0.3V (or 0.3V below the magnitude of the negative power supply, if used).



Performance Characteristics

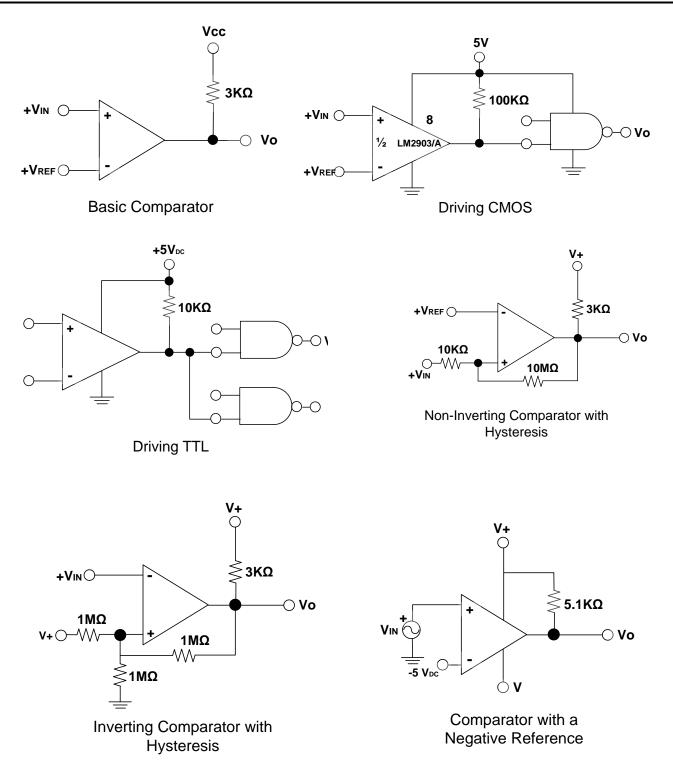
Performance Characteristics (continued)

Application Information

General Information

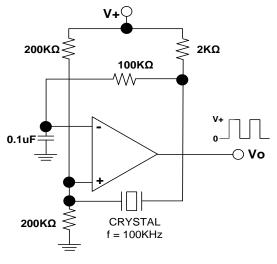
The LM2901/2903 series comparators are high-gain, wide bandwidth devices. Like most comparators, the series can easily oscillate if the output lead is inadvertently allowed to capacitive couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparators change states. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to <10k Ω reduces the feedback signal levels. Finally, adding even a small amount (1.0mV to 10mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations, due to stray feedback, are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. All input pins of any unused comparators should be tied to the negative supply.

The bias network of the LM2901/2903 series comparators establishes a quiescent current independent of the magnitude of the power supply voltage over the range of from $2.0V_{DC}$ to $30V_{DC}$.

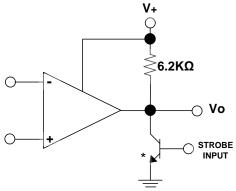

The differential input voltage may be larger than V_{CC} without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3V_{DC} (@ +25°C). An input clamp diode can be used as shown in the applications section.

The output of the LM2901/2903 series comparators is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output ORing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage applied to the V_{CC} terminal of LM2901/2903 series comparator package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used).

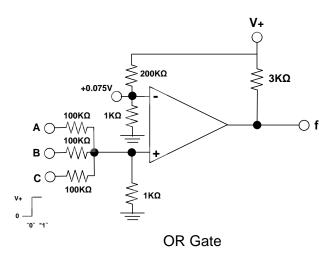
The amount of current the output device can sink is limited by the drive available (which is independent of V_{CC}) and the β of this device. When the maximum current limit is reached (approximately 16mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60 Ω R_{SAT} of the output transistor. The low offset voltage of the output transistor (1.0mV) allows the output to clamp essentially to ground level for small load currents.

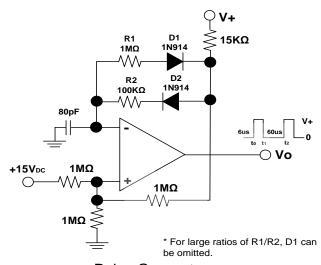


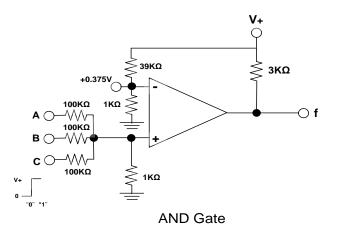
Typical Application Circuit (V_{CC} = 5.0V_{DC})

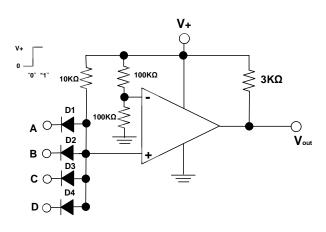


Typical Application Circuit (V_{CC} = 5.0V_{DC}) (continued)

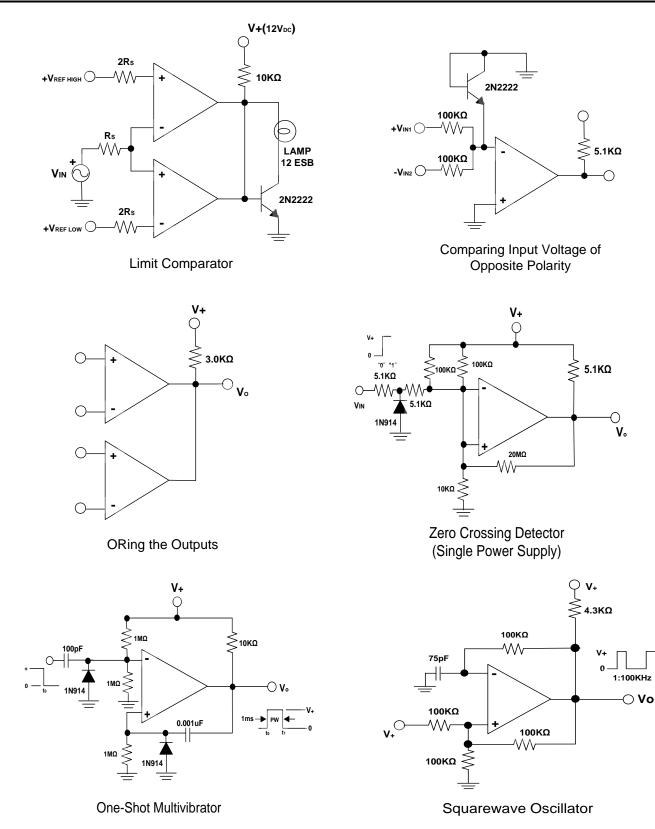



Crystal Controlled Oscillator

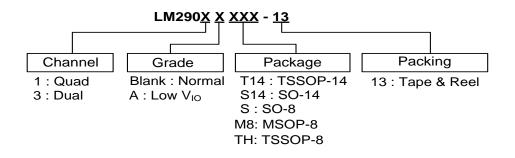

*Or logic gate without pull-up resistor


Output Strobing

Pulse Generator

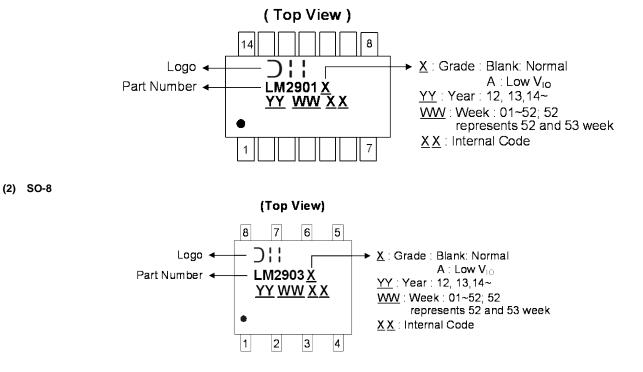


Large Fan-in AND Gate

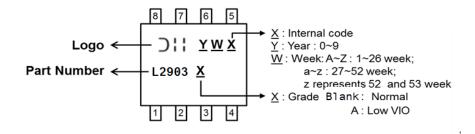


Typical Application Circuit (V_{CC} = 5.0V_{DC}) (continued)

Ordering Information (Note 15)


Part Number	Package Code	Packaging	13" Tape :	and Reel
Part Number	Package Code	Packaging	Quantity	Part Number Suffix
LM2901T14-13	T14	TSSOP-14	2500/Tape & Reel	-13
LM2901AT14-13	T14	TSSOP-14	2500/Tape & Reel	-13
LM2901S14-13	S14	SO-14	2500/Tape & Reel	-13
LM2901AS14-13	S14	SO-14	2500/Tape & Reel	-13
LM2903S-13	S	SO-8	2500/Tape & Reel	-13
LM2903AS-13	S	SO-8	2500/Tape & Reel	-13
LM2903AM8-13	M8	MSOP-8	2500/Tape & Reel	-13
LM2903M8-13	M8	MSOP-8	2500/Tape & Reel	-13
LM2903ATH-13	ТН	TSSOP-8	2500/Tape & Reel	-13
LM2903TH-13	TH	TSSOP-8	2500/Tape & Reel	-13

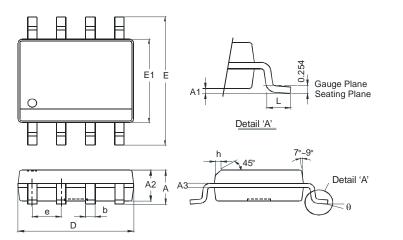
Note: 15. For packaging details, go to our website at http://www.diodes.com/products/packages.html.



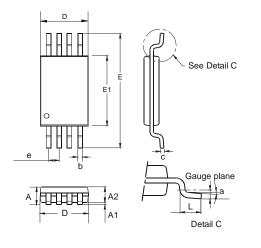
Marking Information

(1) TSSOP-14 and SO-14

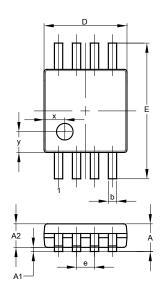
(3) MSOP-8 & TSSOP-8


SO-8

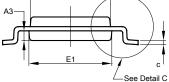
LM2901/ LM2901A/ LM2903/ LM2903A


Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.



	SO-8					
Dim	Min	Max				
Α	-	1.75				
A1	0.10	0.20				
A2	1.30	1.50				
A3	0.15	0.25				
b	0.3	0.5				
D	4.85	4.95				
Е	5.90	6.10				
E1	3.85	3.95				
е	1.27	Тур				
h	-	0.35				
L	0.62	0.82				
θ	0°	8°				
All Di	mension	s in mm				


TSSOP-8

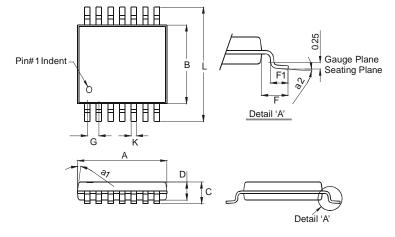
TSSOP-8					
Dim	Min	Max	Тур		
a	0.09	-	-		
Α	-	1.20	-		
A1	0.05	0.15	-		
A2	0.825	1.025	0.925		
b	0.19	0.30	-		
С	0.09	0.20	-		
D	2.90	3.10	3.025		
e	-	-	0.65		
Е	-	-	6.40		
E1	4.30	4.50	4.425		
L	0.45	0.75	0.60		
All	Dimens	sions in	mm		

0.25 Gauge Plane Seating Plane <u>AX10°</u> <u>Detail C</u>

LM2901/ LM2901A/ LM2903/ LM2903A Document number: DS36779 Rev 4 - 2 MSOP-8

	MSOP-8					
Dim	Min	Max	Тур			
Α	-	1.10	-			
A1	0.05	0.15	0.10			
A2	0.75	0.95	0.86			
A3	0.29	0.49	0.39			
b	0.22	0.38	0.30			
С	0.08	0.23	0.15			
D	2.90	3.10	3.00			
Е	4.70	5.10	4.90			
E1	2.90	3.10	3.00			
E3	2.85	3.05	2.95			
е	-	-	0.65			
L	0.40	0.80	0.60			
а	0°	8°	4°			
х	_	_	0.750			
У	-	_	0.750			
All D	Dimen	sions	in mm			

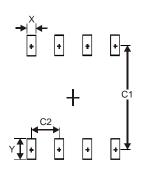
14 of 18 www.diodes.com


Package Outline Dimensions (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

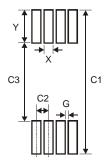
	SO-14					
Dim	Min	Max				
Α	1.47	1.73				
A1	0.10	0.25				
A2	1.45	Тур				
В	0.33	0.51				
D	8.53	8.74				
Е	3.80	3.99				
е	1.27	Тур				
Н	5.80	6.20				
L	0.38	1.27				
θ	0°	8°				
All Di	mension	s in mm				

tsso	P-1	1

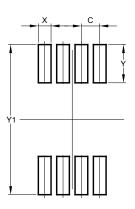

TSSOP-14			
Dim	Min	Max	
a1	7° (7° (4X)	
a2	0°	8°	
Α	4.9	5.10	
В	4.30	4.50	
С	-	1.2	
D	0.8	1.05	
F	1.00	1.00 Typ	
F1	0.45	0.75	
G	0.65 Typ		
K	0.19	0.30	
L	6.40 Тур		
All Dimensions in mm			

SO-14

Suggested Pad Layout


Please see http://www.diodes.com/package-outlines.html for the latest version.

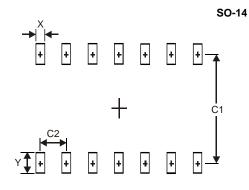
SO-8


Dimensions	Value (in mm)	
Х	0.60	
Y	1.55	
C1	5.4	
C2	1.27	

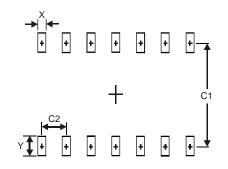
TSSOP-8

Dimensions	Value (in mm)	
Х	0.45	
Y	1.78	
C1	7.72	
C2	0.65	
C3	4.16	
G	0.20	

MSOP-8



Value	
(in mm)	
0.650	
0.450	
1.350	
5.300	


Suggested Pad Layout (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)	
Х	0.60	
Y	1.50	
C1	5.4	
C2	1.27	

TSSOP-14

Dimensions	Value (in mm)	
Х	0.45	
Y	1.45	
C1	5.9	
C2	0.65	

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.