

PI6CL10804WE Datasheet

D

Mai

DiGi Electronics Part Number	PI6CL10804WE-DG
Manufacturer	Diodes Incorporated
anufacturer Product Number	PI6CL10804WE
Description	IC CLK BUFFER 1:4 200MHZ 8SOIC
Detailed Description	Clock Fanout Buffer (Distribution) IC 1:4 200 MHz 8- SOIC (0.154", 3.90mm Width)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
PI6CL10804WE	Diodes Incorporated
Series:	Product Status:
	Active
Type:	Number of Circuits:
Fanout Buffer (Distribution)	1
Ratio - Input:Output:	Differential - Input:Output:
1:4	No/No
Input:	Output:
LVCMOS	LVCMOS
Frequency - Max:	Voltage - Supply:
200 MHz	1.1V ~ 1.6V
Operating Temperature:	Mounting Type:
-40°C ~ 85°C	Surface Mount
Package / Case:	Supplier Device Package:
8-SOIC (0.154", 3.90mm Width)	8-SOIC
Base Product Number:	
PI6CL10804	

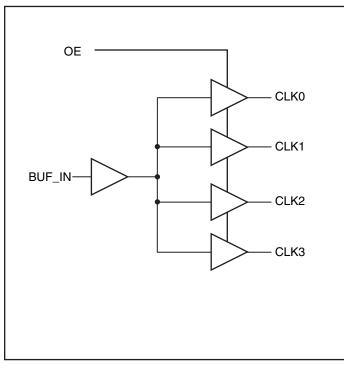
Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

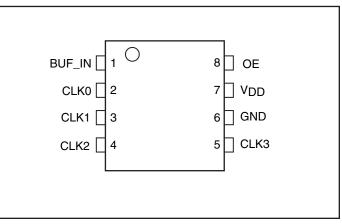
PI6CL10804

1.2V/1.5V, 200MHz, 1:4 Networking Clock Buffer

Features


- High-speed, low-noise, non-inverting 1:4 buffer
- Maximum Frequency up to 200 MHz
- Low output skew < 100ps
- Low propagation delay < 3.5ns
- Optimized duty cycle
- 3.3V tolerent input
- 1.2V or 1.5V supply voltage
- Packages (Pb-free & Green available): -8-pin SOIC (W)

Description


The PI6CL10804 is a 1.2V or 1.5V high-speed, low-noise 1:4 non-inverting clock buffer. The key goal in designing the PI6CL10804 is to target networking applications that require low-skew, low-jitter, and high-frequency clock distribution.

Providing output-to-output skew as low as 100ps, the PI6CL10804 is an ideal clock distribution device for synchronous systems. Designing synchronous networking systems requires a tight level of skew from a large number of outputs.

Block Diagram

Pin Configuration

Pin Description

Pin Name	Description
BUF_IN	Input
CLK [0:3]	Outputs
GND	Ground
V _{DD}	Power
OE	Output Enable

Note:

1.5V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature	65°C to +150°C
V _{DD} Voltage	
Output Voltage (max. 3.6V)	$-0.5V$ to V_{DD} +0.5V
Input Voltage	0.5V to 3.6V

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.5V DC Characteristics (Over Operating Range: $V_{DD} = 1.5V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
V _{DD}	Supply Voltage			1.4	1.5	1.6	V
V _{IH}	Input HIGH Voltage	Logic HIGH level		0.65 x V _{DD}			V
V _{IL}	Input LOW Voltage	Logic LOW level		-0.3		0.35 x V _{DD}	V
II	Input Current	$V_{DD} = Max$, $Vin = V_{DD}$ or GND I pins				15	μΑ
Ver	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2mA$	1.05			
V _{OH}		\mathbf{v} DD – WIII., \mathbf{v} IN – \mathbf{v} IH OI \mathbf{v} IL	$I_{OH} = -8mA$	0.75			V
			$I_{OL} = 1mA$			0.4	v
VOL	Output LOW Voltage	$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 2mA$			0.35	
			$I_{OL} = 8mA$			0.35	V

Notes:

1. For Max. or Min. conditions, use appropriate operating range values.

2. Typical values are at $V_{CC} = 1.5V$, $+25^{\circ}C$ ambient and maximum loading.

1.5V AC Characteristics (Over Operating Range: $V_{DD} = 1.5V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency		0		200	MHz
$t_{\rm R}/t_{\rm F}$	CLKn Rise/Fall Time	20% to 80%			1.5	ns
t _{PLH} , t _{PHL} ⁽²⁾	Propagation Delay BUF_IN to CLKn		1.0	1.5	3.0	ns
$t_{SK(O)}^{(3)}$	Output to Output Skew between any two outputs of the same device @ same transition	$C_L = 5pF$, 125 MHz Outputs are measured @ Vdd/2			100	
$t_{SK(T)}^{(3)}$	Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾				300	ps
tdc_in	Duty Cycle In @ 1ns edge rate		45		55	0/
tdc_out	Duty Cycle Out	1 1	40		60	%

Notes:

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew measured at worse cast temperature (max. temp).

4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

PI6CL10804 1.2V/1.5V, 200MHz, 1:4 Networking Clock Buffer

Note:

1.2V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature65°C to +150°C
V _{DD} Voltage0.5V to +2.5V
Output Voltage (max 2.5V) –0.5V to V_{DD} +0.5V
Input Voltage0.5V to 3.6V

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.2V DC Characteristics (Over Operating Range: $V_{DD} = 1.2V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Param- eters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
V _{DD}	Supply Voltage			1.1	1.2	1.3	V
V _{IH}	Input HIGH Voltage	Logic HIGH level		0.65*Vdd			v
V _{IL}	Input LOW Voltage	Logic LOW level		-0.3		0.35*V _{DD}	
II	Input Current ⁽³⁾	$V_{DD} = Max$, $Vin = V_{DD}$ or GND	I pin			15	μΑ
V	Output High Voltage	VWin VVorV	$I_{OH} = -2mA$	0.85			
V _{OH}	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -8mA$	0.55			V
V Output LOW Valtage		$I_{OL} = 2mA$			0.35)	
V _{OL}	Output LOW Voltage	$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = -8mA$			0.45	

Notes:

1. For Max. or Min. conditions, use appropriate operating Vdd and Ta values.

2. Typical values are at $V_{CC} = 1.2V$, +25°C ambient and maximum loading.

1.2V AC Characteristics (Over Operating Range: $V_{DD} = 1.2V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency		0		200	MHz
t_R/t_F	CLKn Rise/Fall Time	20% to 80%			1.5	ns
$t_{PLH,} t_{PHL}^{(2)}$	Propagation Delay BUF_IN to CLKn		1.0	2.0	3.5	ns
$t_{SK(O)}^{(3)}$	Output to Output Skew between any two outputs of the same device @ same transition	C _L = 5pF, 125 MHz			100	
$t_{SK(T)}^{(3)}$	Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾	Outputs are measured @ Vdd/2			300	ps
t _{dc_in}	Duty Cycle In @ 1ns edge rate		45		55	%
tdc_out	Duty Cycle Out		40		60	70

Notes:

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew measured at worse cast temperature (max. temp).

4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

PI6CL10804 1.2V/1.5V, 200MHz, 1:4 Networking Clock Buffer

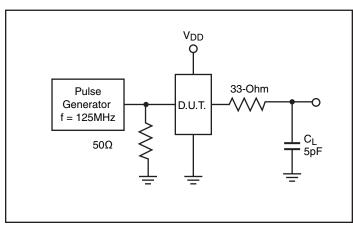
Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
Inno	Quiescent Power	$V_{DD} = 1.5 V$	$V_{\rm DX} = GND$ or $V_{\rm DD}$			10	
I _{DDQ}	Supply Current	$V_{DD} = 1.2V$	$V_{IN} = GND \text{ or } V_{DD}$			10	μΑ
I	Total Power Supply	$V_{DD} = 1.5 V$	All Outputs Toggling,			15	
IDD_TOT	Current	$V_{DD} = 1.2V$	$C_L = 5pF, F_{IN} = 125MHz$			10	mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics.

2. Typical values are at $V_{CC} = 1.2V$ or 1.5V, and +25°C ambient.

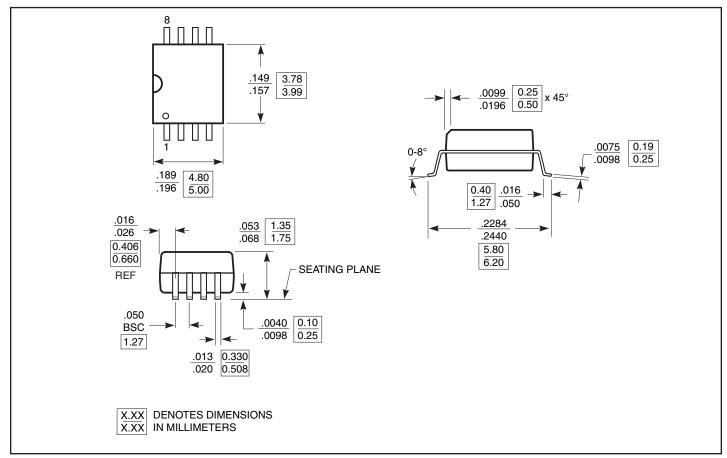

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	2.0	4	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	1.7	6	рг

Note:

1. This parameter is determined by device characterization but is not production tested.

Test Circuits for All Outputs



Definitions:

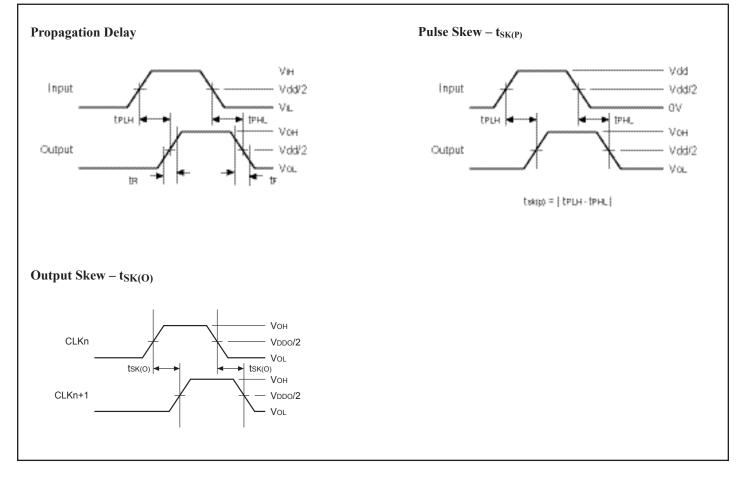
 C_L = Load capacitance: includes jig and probe capacitance.

Packaging Mechanical: 8-Pin SOIC (W)

Ordering Information^(1,2,3)

Ordering Code	Package Code	Package Type
PI6CL10804WE	W	Pb-free & Green, 8-pin 153-mil wide SOIC

Notes:


1. Thermal Characteristics can be found on the web at www.pericom.com/packaging/

- 2. E = Pb-free and Green
- 3. X suffix = Tape/Reel

PI6CL10804 1.2V/1.5V, 200MHz, 1:4 Networking Clock Buffer

Switching Waveforms

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.